
Spatial Distribution of U.S. Household Carbon Footprints Reveals
Suburbanization Undermines Greenhouse Gas Benefits of Urban
Population Density
Christopher Jones*,† and Daniel M. Kammen*,†,‡,§

†Energy and Resources Group, ‡Goldman School of Public Policy, and §Department of Nuclear Engineering, University of California,
Berkeley, California 94720, United States

*S Supporting Information

ABSTRACT: Which municipalities and locations within the United States contribute the
most to household greenhouse gas emissions, and what is the effect of population density
and suburbanization on emissions? Using national household surveys, we developed
econometric models of demand for energy, transportation, food, goods, and services that
were used to derive average household carbon footprints (HCF) for U.S. zip codes, cities,
counties, and metropolitan areas. We find consistently lower HCF in urban core cities
(∼40 tCO2e) and higher carbon footprints in outlying suburbs (∼50 tCO2e), with a range
from ∼25 to >80 tCO2e in the 50 largest metropolitan areas. Population density exhibits a
weak but positive correlation with HCF until a density threshold is met, after which range, mean, and standard deviation of HCF
decline. While population density contributes to relatively low HCF in the central cities of large metropolitan areas, the more
extensive suburbanization in these regions contributes to an overall net increase in HCF compared to smaller metropolitan areas.
Suburbs alone account for ∼50% of total U.S. HCF. Differences in the size, composition, and location of household carbon
footprints suggest the need for tailoring of greenhouse gas mitigation efforts to different populations.

■ BACKGROUND
Demand for energy, transportation, food, goods and services
drives global anthropogenic emissions of greenhouse gases
(GHGs). Households in the United States alone are directly or
indirectly responsible for about 20% of annual global GHG
emissions,1,2 yet represent only 4.3% of total global population.
In the absence of comprehensive national climate policy, U.S.
states and over 1000 U.S. mayors have committed to GHG
reductions.3 In response, a new protocol exists for managing
community-scale GHG emissions that emphasizes contribu-
tions from households.4 For compliance and voluntary policies
to be effective, information is needed on the size and
composition of household carbon footprints for all regions, at
metropolitan, county, city, and even neighborhood scales. As
global urbanization accelerates, increasing by 2.7 billion people
by 2050,5 the lessons from the data-rich U.S. experience may
have increasing importance for planning efforts in urban areas
of the world’s expanding list of mega-cities.
Previous research using a diverse set of methods focused

largely on large metropolitan regions or cities has shown that
household carbon footprints (HCFs) vary considerably, with
energy, transportation, or consumption comprising a larger
share of the total and with households in some locations
contributing far more emissions than others.6−9 For example,
motor vehicles in California account for 30% of HCF,
compared to 6% for household electricity, while electricity is
frequently the largest single source of emissions in locations
with predominantly coal-fired electricity.10 Income, household
size, and social factors have been shown to affect total HCF,
while a large number of factors have been shown to contribute

to household energy and transportation-related emis-
sions.1,8,11,12

A number of studies suggest that geographic differences in
emissions are in part explained by population density.
Population-dense municipalities tend to be urban centers
with employment, housing, and services closely colocated,
reducing travel distances, increasing demand for public transit,
and with less space for larger homes. Early research by Newman
and Kenworthy,13 using data on 32 global cities, suggested a
strong negative log−linear correlation between vehicle fuels and
density (Figure S-1 in Supporting Information). More recent
work using data from domestic and global cities has also
seemed to confirm this relationship, although with more
variance than previously thought.14 One thread of research
suggests that urban form (colocation of housing, employment
and services) to be a more important factor.15 Other studies
suggest that neither density nor urban form result in large CO2
benefits, and these may be outweighed by other social costs,
such as crowding and higher rents.16

These earlier studies have been limited to analyzing a small
set of case studies, and the resulting conclusions are difficult to
generalize beyond those included in the studies themselves. A
large, nationwide data set of all locations at fine geographic
resolution holds potential to reassess the urban form hypothesis
to more accurately describe the relationship between
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population, policy, urban form, and emissions. Our primary

research questions are (1) how much variability exists in the

size and composition of household carbon footprints across all

U.S. locations and (2) how much of this variability can be

explained by population density, income, home size, and other

factors contributing to carbon footprints in urban, suburban,
and rural areas?
In this work, we developed econometric models to estimate

household energy, transportation, consumption of goods and
services, and total household carbon footprints at fine
geographic resolution. Min et al.17 used national energy survey

Figure 1. HCF from (A) electricity, (B) natural gas, (C) fuel oil and other fuels, (D) housing = A + B + C + water, waste, and home construction,
(E) transportation, (F) goods, (H) food, (I) services, and (G) total = D + E + F + H + I. Transportation includes motor vehicle fuel, lifecycle
emissions from fuel, motor vehicle manufacturing, air travel direct and indirect emissions, and public transit. Scales below each map show gradients
of 30 colors, with labels for upper value of lowest of quantile, median value and lowest value of highest quantile, in metric tons CO2e per household,
for zip code tabulation areas (ZCTAs). East Coast metropolitan statistical areas (J), with a larger map of New York metropolitan area (K, outer line)
and New York City (K, inner line) highlight the consistent pattern of relatively low GHG urban core cities and high GHG suburbs.
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data to develop econometric models that could be applied at
zip code tabulation areas to reasonably estimate household
energy consumption. Other work in the U.K. has used
demographic and lifestyle data to estimate more comprehensive
household carbon footprints of 434 municipalities.12,18

We present a model that characterizes the size and
composition of household carbon footprints for essentially
every U.S. zip code, city, county, and U.S. state. Household
carbon footprints are the greenhouse gas emissions required to
produce distribute and dispose of all household consumption
for one year, including emissions resulting from the purchase
and use of motor vehicles, public transit, air travel, household
energy, housing, food, water, consumer goods, and services. We
use this information to develop high geospatial resolution
household carbon profiles of each location and to analyze the
effect of population density and level of urbanization on full life
cycle GHG emissions.

■ METHODS AND MATERIALS
The total household carbon footprint, HCF, of any individual
or population can be expressed simply as the product of
consumption, C, in dollars or physical units, and emissions per
unit of consumption, E, summed over each emissions activity
(i) included in the model

∑= C EHCF i i (1)

We use existing national household survey data to develop
econometric models of demand, C in eq. 1, for transportation,
residential energy, food, goods, and services. Independent
variables used to predict household electricity, natural gas and
other household heating fuels in the Residential Energy
Consumption Survey19 (n = 4363) include energy prices,
heating fuel type, heating and cooling degree days, structure of
homes (number of rooms, percent single-detached, year home-
built), demographic information (income, number of house-
hold members, age of householder, race), home ownership,
percentage rural or urban, Census divisions, and U.S. state.
Predictive variables for motor vehicles miles traveled (VMT) in
the National Household Travel Survey20 (n = 11 744) include
number of vehicles owned, fuel prices, average time to work,
percentage of commuters who drive to work, demographic
information (income, number of household members, race),
number of food and recreation establishments in the zip code,
population density, Census region, and U.S. state. Independent
variables for 13 categories of goods and 11 categories of
services in the Consumer Expenditures Survey21 (n = 6965)
include household size and income. The total number of
independent variables used in all models is 37, all of which were
also compiled for zip codes for prediction purposes. Regression
coefficients, t-statistics, and p-values for each independent
variable, in addition to model summary statistics (adjusted r2),
various tests of model validation and description of uncertainty
are provided in the Supporting Information.
The model regression coefficients were then applied to data

known at the level of U.S. zip code tabulation areas (ZCTAs, or
zip codes) to estimate demand for typical households of each
category of consumption for >31k ZCTAs. Information on the
demographic characteristics of population, the physical infra-
structure of homes, travel patterns, and economic activity are
from the U.S. Census.22 Energy and fuel prices are from the
Energy Information Administration (EIA)23 at the level of U.S.
states. Heating and cooling degree-days were interpolated for

each zip code from 5500 NOAA weather stations24 using
Geographic Information Systems software. Diets for 15
categories of food for adults (first two household members)
and children (remaining members) are from the USDA
nutrition database.25

Demand was then multiplied by GHG emission factors, in
carbon dioxide equivalents26 for electricity,27 fuels,28 and
upstream emissions from fuels.29 Indirect life cycle emission
factors for goods and services are from the CEDA economic
input-output model.30 Input−output life cycle assessment is
widely used to approximate emissions from average goods per
dollar of expenditures in the consumption literature.31

Emissions from water, waste and home construction are from
previous work32 and assumed to be the same for all households
due to lack of regionally-specific data. We then created
population weighted averages for each city, county, and U.S.
state. Zip codes were further classified into urban core, urban,
urban fringe, suburban, rural fringe, or rural to evaluate the
effect of urban development on emissions using U.S. Census
data.33

To be clear, the models do not measure consumption, but
rather estimate demand for goods and services for average
households in zip codes using econometric models of national
household survey data. As such, the results should be
considered benchmarks by which measurements may be
compared. We are limited to only variables available for zip
codes and have left out potentially important variables, such as
fuel economy of vehicles and local energy policies. Local energy
policies are reflected in the model only to a certain degree, by
inclusion of some states as dummy variables.
The primary purpose of these models is prediction and not

explanation or inference. Because of multicollinearity between
independent variables, correlation coefficients should not be
compared. To infer causation and explain the relative influence
of independent variables, we conducted a separate analysis of
results for which we do explore the influence of multi-
collinearity (see discussion of Table 3 in Results and Table S-7
in Supporting Information for a coefficient correlation matrix).
Herein we present results highlighting regional differences

and explore the impact of population density and suburbaniza-
tion. The data set could also support a range of other potential
results not included in this paper, including rankings,
composition comparisons, mitigation analysis, efficiency ratings
based on reported energy usage, quantitative spatial analysis,
and comparison with source emissions. Interested readers are
encouraged to visit the project Web site34 to view detailed maps
and results for almost any zip code, city, county, or U.S. state.

■ RESULTS
The broad regional patterns of household carbon footprints
across the contiguous United States are shown in Figure 1 in
aggregate, and for the home energy, transportation, goods,
services, and food components. It is important to note that this
map allocates all emissions to households at the point of
residence (a consumption perspective), and not where
emissions physically enter the atmosphere (a production
perspective). All data are presented on a per household basis,
but show similar spatial patterns when viewed on a per capita
basis. The Midwest, noncoastal East, and much of the South
have relatively high GHG emissions from electricity (1a), while
the entire West and Northeast regions of the country show
relatively low electricity emissions, due primarily to low carbon-
intensity of electricity production. Natural gas (1b) and other
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heating fuels (1c) are concentrated in colder regions of the
country, including the Midwest, Northeast and parts of the
Pacific. Combining all energy emissions along with the life cycle
emissions of fuels, water, waste, and home construction into a
single metric, “housing,” (1d) presents a more comprehensive
view of the contribution of homes to HCF than when
considering energy components independently. Viewed
through this lens, the Midwest and much of the South have
relatively high emissions, so do parts of the Pacific and much of
the Northeast. HCF from transportation (1e), goods (1f), food
(1h), services (1i), and in total (1g) are widely distributed
across the United States with no distinct broad regional
patterns; however, the largest concentrations of HCF are
surrounding metropolitan regions. When viewing HCF maps at
regional spatial scales it is evident that GHG hotspots
surrounding metropolitan regions have low carbon footprint
cores, with rural areas exhibiting average to low carbon
footprints. Figure 1j demonstrates this effect for East Coast
metropolitan statistical areas. This pattern holds across the
United States, with larger cities exhibiting the strongest urban/
suburban differences, for example, the New York metropolitan
statistical area (1k).
A number of factors account for differences between

household carbon footprints in urban cores and suburbs.
Supporting Information Figure S-2 shows transportation,

energy, goods and total household carbon footprints for zip
codes in the Atlanta metropolitan area. Atlanta was chosen as
the example for this figure because it is the most populous
landlocked MSA. All other large MSAs show very similar
patterns. The zip codes with the highest energy-related
emissions are concentrated in a tight band of suburbs between
15 and 45 miles from the city center. Despite having the same
weather, energy prices and carbon-intensity of electricity
production, suburbs still exhibit noticeably higher energy-
related emissions. Geographic differences are most pronounced
for transportation-related emissions, which range from <10
tCO2e per household in the urban core to >25 tCO2e in the
most distant suburbs. Income and household size contribute to
larger consumption-related carbon footprints in suburbs. The
combined result is distinct carbon footprint rings surrounding
urban cores, with suburbs exhibiting noticeably higher HCF.
This large data set allows for a more complete understanding

of the effect of population density on communities than
previous work limited to a number of cities. In Figure 2, total
household carbon footprints are plotted against log10 of
population density for all zip codes (a), cities (b), counties
(c), metropolitan statistical areas (d), urban core cities (e) and
the 100 most populous urban core cities (f). Carbon footprints
in 10 093 cities (and also zip codes) are widely dispersed, with
standard deviation of 9.2 and mean 52.0 tCO2e. In contrast,

Figure 2. Average household carbon footprints (HCF) in (a) 31 531 zip code tabulation areas, (b) 10 093 U.S. Census cities and towns, (c) 3124
counties, (d) 276 metropolitan statistical areas, (e) 376 urban core cities, and (f) 100 largest urban core cities, by log10 of population per square mile
(log of population density). The red line in each figure is the mean of all HCF for that population density, binned at increments of 0.1 on the x-axis.
Linear goodness of fit trend lines show no correlation between population density and HCF, with the exception of the 100 largest urban core cities,
R2 = 0.29. Mean HCF decreases only after ∼3000 persons per square mile (or 3.5 on the x axis).
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carbon footprints of entire metropolitan statistical areas are
quite similar, 48 tCO2, SD 3.8. The red line in each figure is the
mean of all HCF for that population density, binned at
increments of 0.1 on the x-axis. Mean HCF, standard deviation
and range increase moderately until a threshold of about 3,000
persons per square mile is reached (3.5 on the x-axis), after
which mean HCF decreases logarithmically by about 10 tCO2e
for each 10-fold increase in population density. Linear trend
lines plotted for each chart reveal virtually no correlation
between population density and household carbon footprints
(r2 = 0.001 for zip codes and cities, 0.01 for counties and 0.02
for metropolitan areas), with the exception of the 100 largest
cities (r2 = 0.29). Other possible trend lines produce similar
results, with or without a log x-axis. If plotting only the mean
carbon footprints of highly dense cities, it is possible to find
strong correlations between population density and trans-
portation emissions or total HCF; however, this correlation
almost completely disappears when considering all cities or
metropolitan regions.
In agreement with population density hypotheses, large,

dense metropolitan areas do contain locations in city cores with
very low HCF compared to smaller, less dense cities, but they
also contain suburbs with relatively high HCF, more than
offsetting the benefit of low carbon areas in city centers. Figure
3 shows the min, mean, and max household carbon footprints
of zip codes within each metropolitan statistical area

(Supporting Information Figure S-4 is the same plot with
population density on the x-axis instead of population). There
is a strong negative correlation between population and min
values (r2 = 0.483) but also a strong positive correlation
between population and max values (r2 = 0.361). As
metropolitan size increases the range between the lowest and
highest HCF locations also increases, growing from a factor of
1.5 difference in small metropolitan areas to a factor of 4
difference in the largest. While the 25 most populous MSAs
contain locations with 50% lower HCF than average, there is a
small but noticeable trend of higher overall household carbon
footprints in larger metropolitan areas because of the influence
of outlying suburbs. The two largest metropolises, New York
and Los Angeles, break this trend by demonstrating lower than
average HCF.
Analysis of all urban cores (also called principal cities),

suburbs, and rural areas is presented in Tables 1 and 2. Large,

population-dense cities, which are defined as urbanized areas
inside a principal city,33 have lower HCF than smaller principal
cities; however, the opposite is true with large, relatively
population dense suburbs, which have higher HCF than smaller
suburbs (Table 1). We find no evidence that increased

Figure 3. Min, mean and max carbon footprints of zip codes within
276 metropolitan statistical areas (y-axis) by log10 of total population
(x-axis).

Table 1. Summary of Household Carbon Footprints (HCF)
of Urban Core Cities, Suburban Cities, Suburban Towns,
and Rural Areas for Sample of Zip Codes Categorized by
NCHS33a

trans total
st.
dev.

pop.
(M) pop. density

city, large 11.3 41.8 8.2 20.3 9953
city, midsize 13.9 45.1 9.5 7.3 3583
city, small 14.6 46.6 7.3 13.4 2117
rural, remote 16.0 47.6 5.6 4.4 15
town, distant territory 16.1 48.7 5.1 15.0 160
suburb, small territory 16.8 50.0 6.1 3.3 494
suburb, midsize 17.3 51.0 7.0 5.0 902
rural, distant 18.0 51.3 6.1 9.0 74
suburb, large 16.9 53.1 8.9 43.9 2706
town, fringe 18.2 53.2 14.7 3.8 251
town, remote territory 18.4 54.5 18.8 1.3 93
rural, fringe 19.1 55.8 7.8 12.9 254
aSee Supporting Information for definitions of location types. Table
includes HCF for transportation, total HCF, standard deviation of
total HCF, total population in the sample (in millions of residents),
and population density (persons per square mile).

Table 2. Household Carbon Footprints in Metropolitan
Statistical Area Principal Cities, Suburbs, and Rural and
Micropolitan Areas (MSAs)a

pop.
(M)

tCO2/
cap

tCO2/
hh MtCO2 percentage

metropolitan areas 241 18.4 49 4442 80%
principal cities 98 17.2 44 1695 30%
suburban 143 19.3 53 2747 49%
rural and
micropolitan

59 19.5 50 1145 20%

total 300 18.6 49 5588 100%

aTable includes almost all populated zip codes in the U.S. and per
capital and per household HCF for model year 2007. All locations not
in principal cities, as classified by Census, but within metropolitan
statistical areas are considered “suburbs”.
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population density correlates directly with lower household
carbon footprints in suburbs or rural areas; in fact, the opposite
appears to be true. Transportation carbon footprints are about
50% higher in large suburbs compared to large principal cities,
while total carbon footprints are about 25% higher, or 10
tCO2e.
Table 2 summarizes results from all U.S. zip codes, including

300 M people, or over 99.6% of total U.S. population in the
model year of 2007. Metropolitan statistical areas account for
about 80% of the U.S. population and household carbon
footprints. Principal cities, as defined by the U.S. Census,
account for about 30% of U.S. carbon footprints, while
locations outside of principal cities but still within metropolitan
areas (suburbs), account for about 50% of total U.S. household
contributions to climate change.
Total HCF for all U.S. locations is nearly 6 billion metric

tons of CO2 equivalent, or about 80% of total U.S. GHG
emissions, but would likely be equivalent to nearly 100% of
total U.S. GHG emissions if the carbon intensity of imports
were considered.1 Our estimate aligns very closely with other
national HCF studies of the United States,1,10,35 all of which
estimate average U.S. HCF at about 50 tCO2e. Future versions
of this work would benefit from inclusion of a multiregional
input-output model to account for the carbon intensity of
international supply chains.1,36

To develop the best explanatory model of the results we
regressed total HCF against all independent variables used in
our econometric models (vehicle ownership, household size,
energy prices, etc.) for each zip code in the data set. Of the 37
independent variables included in the regression models, 6
variables explain 92.5% of the variability for all zip codes, 96.2%
in principal core cities and 94.6% in suburbs, as measured by
adjusted r2. In order of their influence on HCF, controlling for
all variables entered previously (or stepwise) these are: number
of vehicles per household, annual household income, carbon
intensity of electricity, number of rooms (a proxy for home size,
which is not available for zip codes), natural log of persons in
household and log of population density (model 1 in Table 3).
The next most significant variables (not shown) are average
time to work, fuel prices for gasoline and natural gas, heating
degree days and average year homes built; inclusion of these
variables improves adjusted r2 from 0.925 to 0.935.
Overall, income is the single largest contributing factor to

household carbon footprints (controlling for all other
variables), but the combined effect of other model variables,
controlling for income, has far greater influence on the model
goodness of fit. Income is positively correlated with population
density for all locations (R2 = 0.339), but slightly negatively
correlated when considering just principal cities (R2 = 0.078).
Models 2−4 in Table 3 emphasize the role of population

density on household carbon footprints. Consistent with Figure
3, model 2 confirms there is virtually no direct correlation
between population density and HCF for all zip codes (β =
0.037, R2 = 0.001) yet there is a reasonably strong correlation
when considering only principal cities (β = 0.484, R2 = 0.234).
Population density also becomes strongly significant when
controlling for income and household size (β = −0.3) for all
locations (model 3). When controlling for rooms and number
of vehicles, population density is no longer significant due to
multicollinearity between population density and these
variables (see Supporting Information for a correlation matrix).
Thus, population density appears to affect the size of homes
and vehicle ownership and these variables in turn affect HCF,

along with income, the carbon intensity of electricity,
household size, and other factors to a lesser degree.
The diverse composition of household carbon footprints

between locations (see Supporting Information Figure S-3) is
also of significance. Emissions from travel are 3 times larger
than energy in some locations, while in other locations energy-
related emissions are considerably higher than travel. House-
hold energy comprises between 15% and 33% of total
household carbon footprints for about 90% of locations,
while transportation comprises between 26% and 42%. The
carbon footprint of food ranges from 12% to 20% of total HCF
and is in some cases larger than either transportation or energy
carbon footprints. Previous research9,10 has further shown that
the size and composition of carbon footprints varies even more
noticeably for households of different demographic character-
istics within locations.
These results should be understood in the context of

uncertainty and the methods used to derive the estimates. We
have used national survey data to predict consumption at fine
geographic scales and have used average GHG emission factors
to estimate emissions. This approach hides important regional
differences. For example, while we estimated vehicle miles
traveled for almost every zip code in the U.S. using locally
available data, we have assumed average vehicle fuel economy
for all locations. We have also assumed similar diets, housing
construction, water, and waste-related emissions because of a
lack of regionally specific data. Some of the model variables
may indicate multiple conflicting aspects of urban form. For
example, increased travel time may simultaneously indicate
increased traffic, higher use of public transit, and longer travel
distances. Also, population density does not account for mixed
use, such as commercial and industrial zones colocated in
populated areas. Additionally, as noted under model validation
in the Supporting Information, the model tends to under-
estimate emissions for locations with relatively high con-
sumption.

Table 3. Summary Statistics for All Zip Codes in the Data
Set (All), Principal Cities (Cores), and Suburbsa

all cores suburbs

1 no. vehicles 0.338 0.183 0.310
annual hh income 0.499 0.476 0.500
g CO2/kWh 0.271 0.255 0.288
no. rooms 0.202 0.242 0.221
ln persons per hh 0.179 0.255 0.154
log pop. density −0.126 −0.084 −0.123
adj. R2 0.925 0.962 0 946

2 2 log pop. density 0.037 −0.484 −0.076
adj. R2 0.001 0.234 0 006

3 annual hh income 0.754 0.683 0.780
ln persons per hh 0.314 0.371 0.266
log pop. density −0.302 −0.320 −0.301
year home built −0.116 −0.060 −0.022
adj. R2 0.653 0.812 0 691

4 no. rooms 0.448 0.486 0.526
no. vehicles 0.515 0.472 0.471
ln persons per hh 0.008 −0.015* −0.014**
adj. R2 0.747 0 808 0 788
N 31447 3646 11011

aStandardized beta coefficients. p < 0.001 for all variables, except *p <
0.1, **p < .01. VIF < 2.1 for all variables.
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■ DISCUSSION

In this study, we characterize average household carbon
footprints of essentially all populated U.S. locations and reveal
a more nuanced relationship between population density and
household carbon footprints. Previous research using much
smaller data sets has suggested a negative correlation between
population density and emissions; as population density
increases, emissions decrease. In contrast, we find that the
mean, standard deviation and range of emissions actually
increase until a population density of about 3000 persons per
square mile is reached, after which mean HCF declines
logarithmically, leveling out at a lower limit of about 30 tCO2

per household (35% below average) at densities over 50 000
persons per square mile. The net effect of this inverted-U
relationship is no overall correlation between population
density and HCF when considering all U.S. zip codes (r2

<0.001, Figure 2a) and cities (r2 <0.001, Figure 2b); however
there is a strong negative log−linear correlation between
population density and HCF if only considering the most
populous cities (r2 = 0.3, Figure 2f), consistent with previous
studies.
When considering entire metropolitan statistical areas the

inverted-U relationship disappears and the correlation appears
to be slightly positive (Figures 2d and 3 and Supporting
Information Figure S-4), similar to the left side of the inverted-
U relationship for zip codes and cities. More populous
metropolitan areas tend to have somewhat higher net HCF
due to the influence of more extensive suburbs, which are on
average 25% higher than urban cores (Figure 3). The two
largest metropolitan areas, New York and Los Angeles, are
exceptions with somewhat lower net carbon footprints,
suggesting the inverted-U relationship may hold when
including extremely population-dense metropolitan areas, or
megacities. Similar comprehensive studies in other countries are
needed to compare the effects of population density and
suburbanization to see if lessons in the U.S. are transferable.
Higher emissions in suburbs, and at moderate population

densities, are due to a number of factors. First, urbanized areas
are wealthier than rural areas, with higher consumption and
emissions; however, at population densities above a threshold
of about 3000 persons per square mile, household carbon
footprints tend to be lower, primarily, due to smaller homes,
shorter driving distances, and also somewhat lower incomes.
As a policy measure to reduce GHG emissions, increasing

population density appears to have severe limitations and
unexpected trade-offs. In suburbs, we find more population-
dense suburbs actually have noticeably higher HCF, largely
because of income effects. Population density does correlate
with lower HCF when controlling for income and household
size; however, in practice population density measures may
have little control over income of residents. Increasing rents
would also likely further contribute to pressures to suburbanize
the suburbs, leading to a possible net increase in emissions. As a
policy measure for urban cores, any such strategy should
consider the larger impact on surrounding areas, not just the
residents of population dense communities themselves. The
relationship is also log−linear, with a 10-fold increase in
population density yielding only a 25% decrease in HCF.
Generally, we find no evidence for net GHG benefits of
population density in urban cores or suburbs when considering
effects on entire metropolitan areas.

Given these limitations of urban planning our data suggest
that an entirely new approach of highly tailored, community-
scale carbon management is urgently needed. Regions with
high energy-related emissions, such as the Midwest, the South,
and parts of the Northeast, should focus more on reducing
household energy consumption than regions with relatively
clean sources of energy, such as California. However, if
household energy were the sole focus of residential GHG
mitigation programs, then between two-thirds and 85% of
household carbon footprints would be left unaddressed in most
locations; the full carbon footprint of households should be
considered in community GHG inventories and management
plans. Suburbs, which account for 50% of total U.S. HCF, tend
to have high motor vehicle emissions, large homes, and high
incomes. These locations are ideal candidates for a combination
of energy efficient technologies, including whole home energy
upgrades and solar photovoltaic systems combined with electric
vehicles. Food tends to be a much larger share of emissions in
urban cores, where transportation and energy emissions tend to
be lower, and in rural areas, where household size tends to be
higher and consumption relatively low.
Several recent studies for California37,38 conclude that 80%

GHG reductions are possible only with near technical potential
efficiencies in transportation, buildings, industry, and agricul-
ture. To the extent that these efficiencies are not met, highly
tailored behavior-based programs must make up the difference
to decrease demand for energy, transportation, goods, and
services that drives emissions.
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